Minimum distance lack-of-fit tests for fixed design

نویسنده

  • Hira L. Koul
چکیده

This paper discusses a class of tests of lack-of-fit of a parametric regression model when design is non-random and uniform on [0,1]. These tests are based on certain minimized distances between a nonparametric regression function estimator and the parametric model being fitted. We investigate asymptotic null distributions of the proposed tests, their consistency and asymptotic power against a large class of fixed and sequences of local nonparametric alternatives, respectively. The best fitted parameter estimate is seen to be n-consistent and asymptotically normal. A crucial result needed for proving these results is a central limit lemma for weighted degenerate U statistics where the weights are arrays of some non-random real numbers. This result is of an independent interest and an extension of a result of Hall for non-weighted degenerate U statistics. & 2010 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Distance Lack-of-Fit Tests under Long Memory Errors

This paper discusses some tests of lack-of-fit of a parametric regression model when errors form a long memory moving average process with the long memory parameter 0 < d < 1/2, and when design is non-random and uniform on [0, 1]. These tests are based on certain minimized distances between a nonparametric regression function estimator and the parametric model being fitted. The paper investigat...

متن کامل

Minimum Distance Regression Model Checking with Berkson Measurement Errors

Lack-of-fit testing of a regression model with Berkson measurement error has not been discussed in the literature to date. To fill this void, we propose a class of tests based on minimized integrated square distances between a nonparametric regression function estimator and the parametric model being fitted. We prove asymptotic normality of these test statistics under the null hypothesis and th...

متن کامل

New Goodness-of-fit Tests for Pareto Distributions*

A new approach to goodness-of-fit for Pareto distributions is introduced. Based on Euclidean distances between sample elements, the family of statistics and tests is indexed by an exponent in (0,2) on Euclidean distance. The corresponding tests are statistically consistent and have excellent performance when applied to heavy-tailed distributions. The exponent can be tailored to the particular P...

متن کامل

ارزیابی روش‌های گروه‌بندی ژنوتیپ های کلزا با استفاده از تجزیه تابع تشخیص خطی فیشر

Discrimination function analysis is a method of multivariate analysis that can be used for determination of validity in cluster analysis. In this study, Fisher’s linear discrimination function analysis was used to evaluate the results from different methods of cluster analysis (i.e. different distance criteria, different cluster procedures, standardized and un-standardized data). Furthermore, H...

متن کامل

ارزیابی روش‌های گروه‌بندی ژنوتیپ های کلزا با استفاده از تجزیه تابع تشخیص خطی فیشر

Discrimination function analysis is a method of multivariate analysis that can be used for determination of validity in cluster analysis. In this study, Fisher’s linear discrimination function analysis was used to evaluate the results from different methods of cluster analysis (i.e. different distance criteria, different cluster procedures, standardized and un-standardized data). Furthermore, H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010